
All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem A. Moving Dots
To solve this problem, you had to come up with the following observations:

1. It is always optimal for each dot to pick the direction of its movement, and then move it. It is quite
obvious, because if we want to move a dot from position x to x+ d, then we need to spend only d
moves, and all of them will be performed in one direction.

2. If a dot cannot be merged with another dot, then it does not have to move at all. We want to
minimize the number of the dots left on the line, so if moving this dot does not influence the
number of dots, then we may do not move this dot at all.

3. Let x1, x2, x3, . . . , xn (xi ≤ xi+1) be the initial positions of the dots and let di = xi+1 − xi. We can
notice, that to merge two consecutive dots i and i+1 we have to spend at least di time. Let’s prove,
that for a chosen subset of dots A we can merge all the dots using exactly

∑
j∈A

dj time. To merge all

the dots using this amount of time, we can move all the dots, for example, to the right. Let’s iterate
over all indexes i from 1 to n − 1, if i does belong to the A, then we can move it to the right and
merge it with another dot.

We know, that for given subset of moving dots A we can make answer equal to n− |A| and spend
∑
j∈A

dj

time. We can minimize the required time by picking the smallest possible dj . One way to implement it is

to make array d, sort it, make another array prefi =

i∑
j=1

dj and binary search the maximal size of A we

can achieve.

Total time complexity is O((n+ q) log n).

Page 1 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem B. Mex Permutations
We want to find the number of permutations a that have f(a) = F for a given array F .

Let array a be empty at the beginning. We are going to fill it with values while iterating through F . If
we are now checking position i of array F (F0 = 0), then we have to place Fi − Fi−1 values in the array
a. We have to place these values in the first i positions of the array a, because in other way they do not
influence on the value of mex of i-th prefix of array a. So, we have to pick Fi − Fi−1 positions out of
unused positions on i-th prefix, let this value be freei, and we can support it after placing elements and
changing prefix. So, the answer for the problem equals to the product of A(freei, Fi − Fi−1) over all i.

To get value of A(n, k) fast, we have to know values of n! and 1
(n−k)! . First values can be precomputed in

linear time. Inverse factorials can be precomputed in linear time as well. Let invn = n!md−2, where md =
998244353. Then we can say that invi = invi+1 · (i+ 1).

Total complexity of the solution will equal to O(n).

Page 2 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem C. Boring Problem
We are given some definitions from the statement.

f(s) =

n∑
i=1

n∑
j=i

|si − sj |

cost(s) =
n∑

i=1

n∑
j=i

f(s[i..j])

We can expand the cost formula to the following state:

cost(s) =
n∑

i=1

n∑
j=i

f(s[i..j]) =
n∑

l=1

n∑
r=l

r∑
i=l

r∑
j=i

|si − sj |

Now it can be noticed, that the cost can be represented as:

cost(s) =

n∑
i=1

n∑
j=i

|si − sj | · ki,j

For some integers ki,j — the number of times |si − sj | occurs in the cost formula. Actually, for fixed i, j
we can say that ki,j = i · (n− j +1), because only segments that contain both of these elements can have
this sum, and each of these segments contain it exactly once.

cost(s) =

n∑
i=1

n∑
j=i

|si − sj | · i · (n− j + 1)

Now, let’s introduce the function g(i), and represent the cost using g:

g(i) =

i∑
j=1

|si − sj | · j · (n− i+ 1) +

n∑
j=i

|si − sj | · i · (n− j + 1)

2 · cost(s) =
n∑

i=1

g(i)

cost(s) =

∑n
i=1 g(i)

2

This way, if some element changes, then we can update the cost in the O(g) — the time we are able
to compute g(i). If we update position p and change its character to c, the change of cost will equal to
costnew = cost− g(p) + g′(p), where g′(p) is the value of g(i) after changing sp to c.

Without any difficult data structures and calculating g in O(n), we get the solution in O(n2+nq), which
is able to get 34 points.

Now we will try to find g(i) in O(log n) with O(n log n) preprocessing. To do this, we are going to expand
all brackets and absolute values.

g(i) =

i∑
j=1

|si − sj | · j · (n− i+ 1) +

n∑
j=i

|si − sj | · i · (n− j + 1) =

Page 3 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

=
i∑

j=1, sj<si

(si − sj) · j · (n− i+ 1) +
i∑

j=1, sj≥si

(sj − si) · j · (n− i+ 1) +

+
n∑

j=i, sj<si

(si − sj) · i · (n− j + 1) +
n∑

j=i, sj≥si

(sj − si) · i · (n− j + 1) =

= (n− i+ 1) · (
i∑

j=1, sj<si

(si · j − sj · j) +
i∑

j=1, sj≥si

(sj · j − si · j)) +

+i · (
n∑

j=i, sj<si

(si · (n− j + 1)− sj · (n− j + 1)) +
n∑

j=i, sj≥si

(sj · (n− j + 1)− si · (n− j + 1))) =

= (n− i+ 1) · (
i∑

j=1, sj<si

si · j −
i∑

j=1, sj<si

sj · j +
i∑

j=1, sj≥si

sj · j −
i∑

j=1, sj≥si

si · j) +

+i · (
n∑

j=i, sj<si

si · (n− j+1) −
n∑

j=i, sj<si

sj · (n− j+1)+

n∑
j=i, sj≥si

sj · (n− j+1) −
n∑

j=i, sj≥si

si · (n− j+1)) =

= (n− i+ 1) · (si · (
i∑

j=1, sj<si

j −
i∑

j=1, sj≥si

j) −
i∑

j=1, sj<si

sj · j +
i∑

j=1, sj≥si

sj · j) +

+i · (si · (
n∑

j=i, sj<si

(n− j + 1)−
n∑

j=i, sj≥si

(n− j + 1)) −
n∑

j=i, sj<si

sj · (n− j + 1) +
n∑

j=i, sj≥si

sj · (n− j + 1))

Now we have achieved the sum formulas where each sum depends only on j. Using these formulas, we can
support these values in a data structure that allows adding at the point and asking sum on the segment
— Segment Tree or Binary Indexed Tree, for example. But still, we don’t know to find sum over all j such
that sj < si or sj ≥ si. The solution for this is quite easy, let’s support 26 such Data Structures in order
to support these values, i-th data structure represents the i-th lowercase letter of English alphabet.

Page 4 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem D. Graph? Are you sure?
Let’s firstly solve the problem with only first and second query types, and query of second type are being
asked after all queries of first type were executed. We will increase restrictions on c further.

Firstly, we need to check whether vertexes a and b belong to the same component. We can use DSU
(Disjoint Set Union) for this. If they are from different components, we need to output −1. From now on,
let’s assume that a and b belong to the same component.

1. c = 1. A simple path is considered good if each value written on the edge has an even number of
entries. As here we have c = 1, all number written on edges are equal, so we have to check whether
the length of the simple path is even. The length of the path between vertexes a and b equals to
da + db − 2 · dlca(a,b), where dv denotes distance from v to some root vertex, and lca(a, b) denotes
lowest common ancestor of a and b. As here we need only parity of length, we can say that parity of
length of the path is the same as the parity of da + db− 2 · dlca(a,b) = da + db (= da⊕ db, where ⊕ is
XOR operation). We can pick any vertex as root, calculate da and db from it and use for calculating
parity afterward.

2. c ≤ 8. Using the idea from the previous solution, we can achieve a hash-like algorithm. Let’s say
that if color i has the odd number of entries on the path, then i-th bit of the number will equal to
1. Using this logic, we can extend the previous algorithm to XOR of distances.

3. c ≤ 4 ·109. If we tried to apply the same trick here, it would consume 2c memory, which is obviously
too much. If we started hashing, let’s continue hashing? Let’s say that hash(value) = x, where x is
a random number in range [0; 263). Now we can check whether the path is good by looking at XOR
of hashes of values. If it is equal to zero, then this path is good and no otherwise. Why would it
work? Actually, it does not work with 100% probability. However, we can prove that the chance of
this algorithm having collision is so small, that it can be omitted.

How to prove this? Firstly, let’s assume that all number that are being XORed are pairwise distinct.
Let’s look at each bit separately. When we XOR with new number, we XOR each bit with either 1
or 0. Thus, the new value of each bit will be either 0 or 1 with equal probability — 1

2 . Thus, having
0 in each bit at the same time is equal to (12)

b, where b is a number of bits in the number.

As we have O(n2) number of ways in the graph and each way may have a collision, the chance of
collision happening is n2

2b
≈ 2 · 10−14.

Now we are going to solve the problem with full constraints. We want to somehow maintain the XOR
value of hashes on the way from any vertex to its root (as there may be more than 1 component). We can
do this using DSU and smaller to larger merging. Let’s introduce some definitions:

• root — rootv is the root vertex of vertex v;

• xr — xrv is XOR of hashes on the way from v to rootv;

• sz — szv is the size of the component, with v being the root of the component;

• cntroot,xor — number of xrv = xor, such that rootv = root;

• ansv — number of good paths in component with root v;

• total — total number of good path in all components.

When we want to add edge from a to b with number num on it, we are going to do the following:

1. Let’s say that A = roota and B = rootb;

2. If szA > szB, then we are going to swap a and b, and A and B;

Page 5 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

3. Now we are going to add all vertexes v from component with root A, to component with root B:

(a) Make rootv = B;

(b) Make xrv = xrv ⊕ xra ⊕ hash(num) ⊕ xrb. It can be expressed as the following: we go from
vertex to its root, then to vertex a from the root, then pass the new edge and go from vertex
b to its root. If we pass some vertexes twice, they will not be counted in XOR;

(c) Add cntB,xrv to ansB and total;

(d) After all vertexes were processed, add 1 to cntB,xrv for each v in component with root A.

4. Add szA to szB;

5. Add ansA to ansB.

Now to answer the queries, we are doing the following:

• For first type query, do the algorithm described above;

• For second type query, check whether they belong to the same component, roota = rootb, and
whether xra = xrb. If the XOR values are equal, then the answer is YES, otherwise the answer is NO;

• For third type query, print ansrootu ;

• For fourth type query, print total.

Why is this fast enough? The small to large merging trick is well-known. It works in O(n log n) because
each element from the set will change its root no more than O(log n) root vertexes. When we change the
root vertex, it means that the size of the set we are adding these vertexes to is greater or equal to the
current size. Thus, the size of the resulting set is at least twice as large as size of the smaller set.

As for storing cnt array, we would use map, as the XOR values may be way too big, the resulting and
total complexity of the problem is equal to O(n log2 n).

Page 6 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem E. Ball momentum
This problem can be solved using two pointers approach. Let’s sort both arrays, so wi ≤ wi+1 and
pi ≤ pi+1. Now, for each element of array w we are going to find the smallest element in array p with
which these balls will form a good pair. A pair (i; j) is called good if any other pair (i′; j′) (i 6= i′ and
j 6= j′) has difficulty of catching less or equal to the difficulty of catching the pair(i; j). Obviously, the
bigger wi is, the smaller pj we need. Thus, let’s keep the pointer on the smallest element in p that makes
a good pair with i. While we can make a pair (i; j − 1), we can decrease j. Thus, the answer is just the
sum of n− j + 1 over all values j for each i.

Page 7 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem F. Typical Query Problem
Firstly, let’s analyze the conditions of segment being good provided in the statement:

• len(S) ≥ L — for a segment [l; r] we need to have r − l + 1 ≥ L or r − L+ 1 ≥ l⇔ l ≤ r − L+ 1;

• avg(S) ≤ C —
∑

Si

|S| ≤ C ⇔
∑

Si ≤ C · |S| ⇔
∑

(Si − C) ≤ 0.

Thus, we can subtract C from each element of a in the beginning and check whether there exists a segment
with sum less or equal to zero.

We can use prefix sums to fast compute the sum on the segment, so let prefi =
∑i

j=1 aj , thus
sum[l; r] = prefr− prefl−1. As we want to minimize this sum, we can fix r and take val = maxr−Li=1 prefi,
thus prefr − val will be the minimal sum of the segment S with len(S) ≥ L. If for any r this sum is less
or equal to zero, then the answer is YES.

Doing this results in O(n · q) complexity.

Let’s make the first and the most important observation: if at some moment of time the answer is YES,
then after any update the answer will still be YES.

We can use binary search on the point of first entrance of YES in answers. Let’s apply first t operations
on the array and check whether there is a good segment S.

How we can check this in linear time? Let’s make an array bi = ai − ai−1 (a0 = 0), thus, if we add x to
segment [l; r] array b changes only in two positions: bl = bl + x and br+1 = br+1− x. We can restore array
a as following: ai =

∑i
j=1 bi.

After finding first moment t we have to print t NO answers and q − t YES answers.

Considering the solution described above, we have achieved the final complexity of O(n log q).

Page 8 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem G. Tree queries
Let’s denote cur as XOR value of all vertexes in the initial graph and szv as number of vertexes in the
subtree of vertex v. Let’s track how cur changes during the queries. If szv is odd, then cur value will
change to cur⊕x, where ⊕ denotes XOR operation, or it will remain unchanged otherwise. Remembering
two properties 0⊕ x = x and x⊕ x = 0, this observation is obvious.

Now let’s look at cur by bits. We can count the number of trees, where this bit is set, let it be f(bit),
then ans =

∑
bit f(bit) · 2bit. How we can count the f(bit)? Consider some cases:

1. no query changes the value of bit-th bit:

(a) cur has bit-th bit set — f(bit) = 2q;

(b) otherwise — f(bit) = 0.

2. f(bit) = 2q−1 otherwise.

First two cases are quite obvious, now we should prove last case. Let cnt0 be the number of queries that
does not change the bit-th bit in cur, and cnt1 = q − cnt0. Let’s consider two cases, when we have bit-th
bit set in cur and do not have it set.

Suppose bit-th bit is set, then we have to choose even number of queries that change bit-th bit in cur.
Although, we can use any queries that do not change bit-th bit in cur.

f(bit) = 2cnt0 ·
∑
i=0

C(cnt1, 2i) = 2cnt0 ·
∑
i=0

(C(cnt1 − 1, 2i− 1) + C(cnt1 − 1, 2i))

= 2cnt0 ·
∑
i=0

C(cnt1 − 1, i) = 2cnt0 · 2cnt1−1 = 2cnt1+cnt0−1 = 2q−1

If we suppose that bit-th bit is not set, then we can follow the same logic: we can choose any queries that
do not change bit-th bit in cur, and choose odd number of queries that change bit-th bit.

f(bit) = 2cnt0 ·
∑
i=0

C(cnt1, 2i+ 1) = 2cnt0(2cnt1 −
∑
i=0

C(cnt1, 2i))

= 2cnt0 · 2cnt1−1 = 2cnt1+cnt0−1 = 2q−1

This finishes the proof. Total complexity of the solution is O(q log x) what is O(60 · q) in this problem.

Page 9 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

Problem H. Anton the Guard
Let’s look through some solution with different time complexity.

The first solution has the time complexity of O(n!). We can brute force the order of visiting vertexes using
next_permutation. Then check whether deeporderi ≤ deeporderi+1

for all 1 ≤ i < n. Here, deepv denotes
the minimal number of roads that need to be traveled to reach vertex v from vertex 1. To calculate the
distance between two vertexes, we can either use LCA in O(log n), or just use BFS in O(n).
The second solution involves a similar idea. We can do bitmask dp, as there are only O(2n) states, and
we can easily traverse, going to the vertex we can go to and have not been there before. It works in
O(2n · n · log n).
Let’s spot the first critical observation. We can look at the graph by layers. On layer i there will be
all vertexes v with deepv = i. Let’s denote the set with these vertexes v as layerdeepv . Let dpv be
the minimal distance to visit all vertexes u such that deepu ≤ deepv following the condition in the
statement. We can choose the starting vertex in the previous layer and bruteforce all possible orders of
visiting vertexes in the next layer. We can use two approaches that were already mentioned above. First
algorithm will have complexity of O(

∑n
i=1 |layeri| · |layeri+1|!), and the second one has complexity of

O(
∑n

i=1 |layeri| · 2|layeri+1|).

We can use the idea from the previous two subtasks — we have to try to make a transition from layer on
depth i to layer on depth i+ 1. Let’s make another critical observation:

For sets of vertexes T = layeri, S = layeri+1 with |S| > 1, with L = lca(S), we have to traverse all the
edges of subtree of vertex L till vertexes on layer i+ 1 one or two times, let sum of edges in this subtree
be sum_edges. Specifically, if we start at vertex u on the layer i and finish at vertex v on layer i + 1,
then dpv = dpu+2 · sum_edges− dist(u, v). We can prove it in the following way. When we come to any
vertex p that has unvisited vertexes r ∈ S(r 6= v), then we have to go to this subtree and visit all vertexes
r before leaving it. Thus, we go to the neighbor vertex and back, traversing each of these edges twice. As
we visited the useful edges except of that edges that belong to the path, we will traverse them only once.

As we found the formula of recalculating values of dp on the following layer, we achieved complexity of
O(

∑n
i=1 |layeri| · |layeri+1| · log n). Let’s analyze the formula dpv = min dpu+2 ∗ sum_edges−dist(u, v).

For all vertexes v ∈ S calculate minimal value of dpu − dist(u, v), where u ∈ T . We can do this in lineal
time. Firstly, split dist(u, v) to dist(u, LCA(u, v)) + dist(v, LCA(u, v)), where LCA(u, v) denotes the
lowest common ancestor of u and v. Let us calculate the minimal value of dpu−dist(u, LCA(u, v)), so we
should store minpath1,t,minpath2,t — two minimal values of {dpu−dist(u, t); r} in vertex t, where u is in
the subtree of r and u ∈ T and r is son of t. Assume that minpath1,t,1 6= minpath2,t,1. For t ∈ T we store
just {dpt, t}, for t /∈ T we calculate minimum by finding two minimal values of {mindist1,r,0 −Wu,v; r},
where Wu,v denotes the weight of edge from u to v. Then assume t equals LCA(u, v), then

1. min dpu − dist(u, v) = minmindist1,t,0 − dist(u, t) for mindist1,t,1 /∈ Parentsv;

2. mindist2,t,0 − dist(u, t) for mindist2,t,1 /∈ Parentsv;

Where Parentsv = {parentv ∪ Parentsparentv}.
We have recalculated minpath values from bottom to up. Now let us go in the opposite direction —
from top to bottom and support value — the minimal value of the part of the dp formula. Let us push
values from v′ to its children, then for all u′ 6= mindist1,v′,1, and parentu′ = v′ we push into u′ minimal
value of mindist1,v′,0 −Wv′,u′ and value −Wv′, u′, while for u′ = mindist1,v′,1, we push minimum of
mindist2,v′,0 −Wv′,u′ and value −Wv′, u′. As a result we have value in the u′ ∈ S, that denotes the
minimal value of dp transition formula.

Thus, we can solve this problem in O(max deepv · n), which is likely to be O(n2).

Now we have almost working solution, let’s try to think of some vertexes that do not really influence on
the answer. We can delete such vertexes. Let’s say that vertex v during recalculating dp on layer i to
layer i+1 is important if it has at least two important sons. Vertexes on layer i+1 are important. If the

Page 10 of 11

All-Ukrainian Junior and Girls’ Olympiad in Informatics. Final round
Poland, Krakow, 22 April 2023

vertex is unimportant, it can de deleted from the graph. Let’s prove, that while having c vertexes on layer
i+ 1 the total number of important vertexes on layers less or equal to i is at most c. As each important
vertex has at least two important sons, the number of vertexes on the previous level decreases in at least
2 times. Thus, c+ c

2 + c
4 + c

8 + · · · = 2 · c.
We can spot that we delete some vertexes on the previous layer. There are two such cases:

• Vertex v has 0 important sons — we can prove that it is never optimal to start from v on the previous
layer and finish at some vertex u on the next layer. Consider the number of times we pass the edge
from v to its parent. As we finished in v we passed it once on the previous layer. If we want to start
from vertex v, then we have to pass it again. Thus, it will be visited 2 times. Although, if we try
to start from some vertexex u that has important sons, the number of times we pass each edge will
not change, except for an edge from v to its parent.

• Vertex v has 1 important son — this vertex is deleted, by we use it for the recalculating the dp
values.

We have to be careful with some things during the implementation:

1. There is only 1 vertex on the next layer. We have to recalculate the dp using the parent of the
vertex;

2. The root of the tree may be deleted — be careful with it.

Thus, if we can compress the graph using the algorithm described above we can achieve the complexity
of O(

∑n
i=1 2 · |layeri|), which equals O(2 · n) = O(n).

Finally, we solved this problem in linear time. For better understanding of the editorial recommend you
to check author solution.

Link to the my solution: https://pastebin.com/TJLQWjzC

Page 11 of 11

